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A SUBSTITUTE INVERSE FOR THE BASIS OF

STAIRCASE STRUCTURE LINEAR PROCRAM

by

Richard D. Wollmer

1. The Staircase Structure

A staircase structured linear program is of the form:

Find x, >0, min z such that

Alx1 = bl
Bt—lxt-l + ALXL : bt Fl e e P
CyXy + C X, k.. b CpXp = Z

where At is m by n_, By is m g by . 1s m,

one by n and x AR} by one. The staircase linear program is repre-

5 fz t

sented in detached coefficient form in Table 1.

The first m, rows (equations) will be called period

by one, c¢ is

1 rows

(equations), the next m  rows (equations) the period 2 rows (equations),

€

etc. Similarly, the first n columns (variables) will be called the

1

period 1 columns (variables), etc.
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2. Representation of the Basis Inverse

Consider any basis of the program (1.1)-(1.T+l). Clearly any such

basis must also be staircase with

t e
Zmiszni, Es Tou.a T (2)

for if not the first m o+ ...+ m TOWS would be dependent. Of course

equality holds in (2) for t = T. Let |

Then the staircase structure basis may be further broken down to the form i

in Table 2.

Theorem 2.1. Through a suitable rearrangement of the basis, B, columns,
B may be put in the form of Table 2 such that the submatrix consisting

t
of the first Zy.q M TOWS of columns of B is nonsingular, t =1 i

gy

1

Proof: Clearly the first m, + m_  + ... + columns in this restric-

g |

tion of B are independent for if not B 1is singular. Similarly any

basis for the first m1 e mt rows of B must consist of ml + oees + M

columns. Consequently there is a subset of the columns of the first

my + o0 + My TOWS of B consisting of the first ny o+ oo+ 0y columns

and m_ - a__, of the next m columns that are independent. Hence the

theorem is proven as one may rearrange the first ny columns for t b

the next n_, columns for t = 2, etc.

[
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We will assume throughout that the columns of B are rearranged

-

so as to satisfy the conditions of Theorem ©.1. Then in Theorem 2

~

2 it

will be shown that through a series of elementary operations B may be

placed in the form of Table 3.

Theorem 2.2. The staircase structure basis may be reduced to the form
displayed in Table % with
-1 . %

K, = &, (k.1a) z_
El = K;by (4.1b) |
Zt2 = R [A] (L.tc)
Ky = By~ [0]By_; 4] Z‘t—l EIAtll’_l £ (4.ta)
b, = K [b, - 0B, ;15 11, t =1 (L.tb)

where in (lL.tb-c), O is a column of a,_, zero vectors and a, = 0.

Proof: By Theorem 2.1, K1 = A;i is well defined and multiplying by K1

yields the desired form for the first m, equations. Suppose the theorem

1

holds for equations My, Myy eee 5, M g5 and the basis B 1is placed in

the form of Table % for these equations. Subtracting [OlBk_l 1] times
the k-1 perlodxrows from the k period rows yields [Bk_1 b " [O[Bk_l 1]
- k-1 2 & :

Ak-l 2]Ak1Ak2][xk ] = bk [O]Bk_l]bk_l By Theorem 2.1 the first

m columns of the above coefficients must be independent and
Ky = [Bk-l 5 [OIBk_1 l]gk-l ?[Akll—l exists and clearly the theorem

holds for t = 1,...,k . The theorem then follows from induction.
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From this, XpgeeoyXp may be found as follows

[xp.y o *ql = by = By (5.7)

- b (5.7-1)

[y #ogl = By = b3 = (5.2)

Braplis Py m %y =18 (5:1)

Note that in this form a period t variable may be basic for

period t or for period t+l only.

12z the Substitute Inverse

Suppose a new variable is to enter the basis. Let t be the period
of the entering variable and k the period of the exiting variable. Then
there are three cases to comnsider: k = t, k >t, or k<t . Call xtj

the entering variable and x the exiting variable.

ki
Case 1. k = t. There are two subcases to consider: the exiting variable
X4 is basic for period t or the exiting variable is basic for period

t+l. 1In either situation, none of will change according

P RERFL
to (3). Also Kl""’Kt-l will not change. Two methods for updating

Kt""’KT will be presented.

Pivoting Method. To form the new K, if the exiting variable is

basic for period t , one simply multiplies the period t coefficient




vector of xtj by the current Kt’ append it to Kt and pivot on the

element in that column belonging to the row for which the exiting variable

is basic. Then K for s = t+l,...,T are found recursively as follows.

Compute the new A Consider the following matrix

sk o = Seafaay o

old, -

old
s [Bs-l 2|As 1] (6)

Tnew
[l =k

old. .eld
Kg | a1 10621 o

. K [B

s s~1 2 -[O’B

Clearly the last m-a_ columns form the last m-a_ columns of the

identity matrix. Hence the new Ks is obtained from the old one by

appending to it the matrix Kzldﬁ pivoting on the first a rows

s-1 2’ s-1

of the appended columns, and then dropping them.
For the situation where the exiting variable is basic for period

t+l, K_ will remain unchanged. However, A and B,

¢ 2 will change

2

Then Kt+ ,K_ are

with column xtj replacing column X4 = X% -

ti’

obtained as in the previous situation with the new K

170

- being obtained
from the old one by a single pivot and the new Ks obtained from the old

by a1 pivots for s=t+2,...,T.

*
Dyad Matrix Method. If B is an m by m non-singular matrix,

C is an mby 1 columm vector, and R a 1 by m row vector, then

B+cr]™t = B lekEE] (7.1)

*
This approach was suggested to the author by George B. Dantzig.




where

€=8 C (1.2)
5 = 5
R - RB (7.3)
~1
k~——_T' (7.4)
1+RB 'C

The reader may verify the above by multiplying B+CR by the right hand
side of (7.1). The matrix CR, which is the product of a column and a
row vector, is called a dyad matrix. Hence if one adds a dyad matrix
to B, the inverse of the resulting matrix is obtained by adding a dyad 5
matrix to B-l.

From (7) it follows recursively that if R, and C,; are colum ;

vectors then k

n -1 n
o T .
B + Z cRy[ =[BT+ Z A (8.1)
£-1 §=1 3
where '
- = :
g, =1 ¢ (8.2)
% 1 b i3
R e (8
1 = Sy :3)
<
K, = - (8.4)
SRRt
1 1 1
i-1
3'1;B‘1+Zk6§ i=2. (8.5)
i i TR B 2 .
31

Hence if one adds n dyad matrices to B, one adds n dyad matrices to




its inverse. Note that it follows from induction in the above that each
of the ﬁi is the product of a row vector and B-l. Note also that this
representation is not unique and in fact in (8) depends on the ordering
of the dyad matrices.

Performing a pivot operation is equivalent to adding a dyad matrix.
Specifically, R 1is the pivot row and C is such that its ith component
is the multiple of R to be added to row i. Also replacing column Pj

%

*
by Pj in a matrix is equivalent to adding a dyad matrix with C = Pj--Pj

and R 1is the unit vector with a one in position j.

]
Theorem 3.1. Suppose Pt K°1d + C.R.K°1d where C., and R, are
s s = 11's g i
column and row vectors respect;vely. If B 517 A52’ BSE’ and Av+11 are
old i oold . .
unchanged then K Kol EC R! i Kei1 where C; and R; arc column
and row vectors reSpectlvely.
-new zold : old
Proof: It follows from (L.tc) that A = A +$C.R.K A and
—— s2 s2 1 i’s s2
Kew =1 old =1
consequently from (L.ta) that ([K 1] S+1] 2: C R where
= old =
Ry =R, K~ A and C; = —[O]le]ci. The theorem follows from (8).
Theorem 3.2. Suppose Kzew =K' + CRKZld, and [O|Bnew [OIB01d C'R

1d
where K' = \° -+§: c R K ld;C, Ci and C' are column vectors, Ri

are row vectors ané R 1is a unit row vector. Suppose also B52 and As+11

old old 2
are unchanged. Then Ks 1 Koo 2: ¢, where the C, are

column vectors and the Ri are row vectors

10




new,~1 d old

Proof: From (L4.ta) and (L.tc) it follows that [} 1] Ky 1]
[-MASCIO] where M - [[O]B 51 ] + C'R][K'+CRK_1d] - [O!Boid]K
or M - [[O] B°id + C'R][K" h0]d] + [C'+10)| BZid]L c RC]RKOld

Thus M and consequently -MAS? is the sum of ¢ dyad matrices. The

theorem follows from repeated application ot (7.1) and (7.3).

Now consider what happens when the entering and exiting basis

variables are both from period t ., If they are basic for period t+l

S e obtained from KOld by

are unchanged and Kt+1 t+1

Ehen it K

1.2 t

a single pivot operation which is equivalent to adding a dyad matrix.

From Theorem 3.1 it follows that K:ew is obtained from K:1d by

adding a single dyad matrix whose rows are linear combinations of the

rows of K:ld for s > t+l.

If the entering and exiting variable are basic for period t,

then K are unchanged and KS is updated by adding a single

S
old

dvad matrix whose rows are linear combirations of the rows of KS for
s > t. For s = t+l, this follows from Theorem 7.2 and for s > t+l

this follows from Theorem %.1.

Case 2. k > t. For this case, each of a increase by one

P |
(ot ?Tk-1

while all other a, remain unchanged according to (%). Suppose X i

/

is basic for period k. Let th be basic for period t+l. Then a
currently basic for period t+l1 must become

variable X 5(t+l)

basic for period t+2 instead, and continue in this manner until

finally a variable basic for period k-1 becomes basic

k-1 j(k-1)

for period k replacing the exiting variable K If ij is basic

Lk




for period k+l the replacement process continues for one more period.

For this case Kl""’Kt are unchanged.
Pivoting Method. For Ki consider () for s - t+l and where
§t2 is appended by one column whose coefficients are generated by the

coefficients of the entering variable xtj' Pivot on any nonzero element

of column xtj in a position at+1 or higher. (There must be at least

one such element or Theorem 2.1 is contradicted.) Let { be the pivot row.

Then the lth column of the old period t+l basis (which must be a column

of is deleted from the period t+l basis and introduced in the

By 1l

period t+2 basis. The process continues for Kt+2"“’Kk‘ Thus for

K> t+2 <s < k-1, A is appended by the column deleted from A

s-12 s-11°
Then Ks is obtained hy pivoting on the first 8.1 * 1 rows of the m,
by a +1 (i.e., a is increased by one) matrix KOIdﬁ The
s-1 ? Ts-1 s "s-12°

variable deleted from the period s basis is the one which has a one in
the same position as that of the column introduced in the period s basis.
That variable is then introduced into the period s+l1 basis. For s = k
the procedure is the same except the variable leaving the period k basis
must be X i and it of course is not introduced into any other basis.

For s = k+l,...,T the computation of K, 1is identical to that of Case 1.
5k ¢ Xi is basic for period k+l, it leaves the period k+l1 basis instead

of the period k basis and the procedure is the same except for minor

changes in the sequence of values for s

and A

Dyad Matrix Method. Here, in many cases the As2’ 852’ Sl

will not always remain the same. However, as will be seen later on, when




this happens, only one column of the matrix [B Ab 11] changes. This
S¢ 5+

can occur by replacing a column of Bs” (and consequently a column
of ASA) by another coluun in Bs”’ deleting a column from Bs’ and
= c c

adding a column to etc. Such an operation will be called an

Ab+11’

elementary column replacement.

£
Theorem 3.3. Suppose g s KOld =5 C.R,K01d where C. and R, are
s S T o L S £+ i
s old % old
column and row vectors respectively. Then K- +1 Kool 2: CIRIK )

new,newi=1

(and possibly a permutation of the columns) if [Bs“ As+1] is obtained
from [BO})d Zi?] by an elementary column replacement and where C{

and R{ are column and row vectors respectively.

zeY is obtained by a single column replacement in Aoig
i

From Theorem 3.1, replacing A id with As° is equivalent to adding 1
old old . new
1] s+11 with A sp1 isa
old]-l
+1

Proof: Case 1: A

dyad matrices to [K in (6). Replacing A

single column replacement adding another dyad matrix to [K to

new

obtain [K 1] and the theorem follows for this case. Case 2: A column

of Bsﬁ (and consequently As°) is replaced. Replacing K:ld with Kzew

in (L4.5c¢c) and (6) again adds / dyad matrices to [Kzif]-l Then replacing

d 2)

Aoid and Bo} with An?w and Bnew is equivalent to a simple column

s2 s2 s2 s2

replacement thus adding another dyad matrix to obtain [K neY] 5 The |
theorem follows for this case. Case 3: A column of BS2 (and As2) is ;

dropped and an additional column is appended to As+11' This is equiva-

lent to replacing the out_oing column of B52 with the incoming column

of As+1 1 and the outgoing column of A53 with a column of zeros. Hence




this case follows from case 2. Case L: An additional column of Bs”
(and AsQ) is appended and a column of As+11 is dropped. Delete the

outgoing column of As+11 and append it to Bs” and append a column

Vot

of zeros to As?' This reduces case L to case 2 and the theorem is

proven.

Suppose X is basic for period k. Kl""’K are unchanged.

t

Kt+1 is updated by a single pivot operation hence adding a single dyad

matrix. Assume Ks_1 is updated by adding { dyad matrices. For

s = t+2,...,k-1 a variable basic for period s-1 becomes basic for
period s and a variable basic for period s becomes basic for period
s+l thereby shifting a column from B 11 (and As-ll) to B_ ;5

(and As-12) and also shifting a column of B_ (and Asl) to B

1

For updating KS one may update the inverse by first

s2

(and ASQ).

adding a column to (and As and deleting a column from Asl

Ba-10 -12)

and then deleting a column of B and replacing it with zeros in

s-11

[OlBs-II]' By Theorems 3.2 and 3.3 K;l and K_ would be updated by

adding f+1 dyad matrices. Note that for Theorem 3.2 to apply the

dyad matrix corresponding to the deletion of a column of As-ll in

s-1

s=k the same result holds except that the column of Ak and Bk

K must be acted upon first (i.e., correspond to i=1 in (8)). For
dropped is that of the exiting variable and hence is not shifted to the
k+1 period basis. For period k+l, the column of Bkl corresponding

to the exiting variable is dropped while Bk2’ Bk+11 and Ak+11 are




2

unchanged, resulting in one additional dyad matrix to be added. Hence
for s=t42,...,k Ks is updated by adding s-t dyad matrices and for
s > k+l, KS is updated by adding k:l-t dyad matrices. The result
for s > k+2 follows from Theorem 3%.1.

LE Xy

additional period but the formulas remain the same.

is basic for period k+l, the replacement goes on for an

Case 3. k < t. For this case ak""’at-l each decrease by one accord-

ing to (3). Suppose X

leaves the period k (k+1) basis, a period k (k+l) variable in the period

is basic for period k (k+l). Since %

k+1 (k+2) basis must leave that basis and enter the period k (k+l) basis.
The process continues until finally xtj enters the period t basis.

Pivoting Method. Suppose X4 1s basic for period k. Then

Kl""’Kk-l are unchanged. The choice for the period k variable to
enter the period k basis may be any variable such that Kk times its

; . .th :
period k column coefficients yields a nonzero element in the j posi-

72N
0 )

tien. For si=llerlgioontaly KS is computed as follows. Form (£ ) and

perform a sequence of pivots on the m, by a -1 matrix to

s-1 Bs-12

obtain RS. Then isfﬁ | A will be the identity matrix with one

]
s 1

with the coefficients of any period s

s-12

il

variable, Xgy currently basic for period s+l such that Rs times its

column missing. Append As

period s column coefficients yield a nonzero element in the row for
which Rs has all zeros, and pivot on that element in Rs times its
column coefficients. Now Xs g is in the period s basis and has left

the period s+l basis. For period «. simply let the period t coefficients




4-u—--l-l!lll-!IIl'ﬂ!!!l!lHlll!lllllIlIllIl!!ll!lllllllllllll‘lllll"

of Xei replace the coefficients of the period t wvariable which has
left the period t basis and pivot on the m,. by ar matrix

KOLdﬁ to obtain the ne K [he procedure for findi K K
t t-1 2 1 ¢ new t* ihe procedure L ndaing ta ]2 Ny

is then identical to that of Case 1.

If Xy s is basic for period k+! instead of period k the pro-

cedure is the same except that Kk is unchanged and X s leaves the

period k+l basis.

Dyad Matrix Method. Suppose xkj is basic for period k. Then

a column of Ak2 and Bk2 is shifted to Akl and Bkl

column coefficients of xkj' A single pivot, or the addition of a single

to replace the

dyad matrix then updates Kk' For s = k+l,...,t-1 an additional column

is added to BS and a column is added to

.11 As+11 and Bs and

+11

Hence as in case 2, if K is

deleted from A
s s-1

and B
s+

+12 12°

updated by adding [ dyad matrices, KS is updated by adding (+1 dyad
matrices by Theorems %.2 and %.%. The same is true for s=t except that

the column added to At and Bt is x and hence no column is

1 1 ti

deleted from At2 and Bt Hence Kl""’Kk-l are unchanged. KS is

o

o

updated by adding s-k+l dyad matrices for s=k,...,t and by adding
t-k+2 dyad matrices for s > t+l. The latter follows inductively from
Theorem %.% for s=t+l and Theorem %.1 for s > t+42.

If x

kj k are unchanged. An

is basic for period k+l, Kl""’ K

argument similar to the above shows that Ks is updated by adding s-k

dyad matrices for s-k+l,...,t and by adding t-k+1 dyad matrices for

s > t+l.

1¢




L. Finding the Multipliers

In Theorem L.l it will be shown that the simplex multipliers may

be found by the following recursive relationships:

mp = Sy o G (8.%)
My = Coy p Cop = e (01By IR, £ <T (9-¢)
where
611 = 1K) (10.1)
Cooy o Cep = (6 o7 [€ep o Croy 118y lCdKe, £>1 (iaie)
with éTl = éT and 602 being vacuous.

Theorem L.1. The simplex multipliers are given by (9).

Proof: From Table 2, and thus from (4.la)

iy * T = Ory
m = C11K1 = ﬂéBllKl' Hence the theorem holds for ¢t = 1. Suppose the

theorem holds for t = k. For t = k+l one has (i) C

Teles + MeiPee = Geo
ad (3] et a "t T Thdl g

=0, By; = |0] and C;, = Cp. By the inductive

Ck+1 1’ using the convention for

k+1 = T that i1

Tl
assumption and (Lkc), ﬂkAkZ = [&k_l 5 akI]AkE - 7rk+1[0|Bk1]§k2 and (i)
may be replaced with (iii) 7 ;[B,, - [o}nkl]ékzl = Gy = [ék_l 5 6k1]Ak2'
Combining (ii) and (iii) yields m (B, - [olBkl]AkelAk+1 =

,10!B By (lka), multiplying

Cp = G 5 CkllAkzlck+1 L PN ot 10

1’7




both sides on the right by Kkol and noting that C is vacuous yields

02
(9.t) for t = k+l. The theorem follows from induction.

Once the simplex multipliers are known, one can find the new variable

to enter the basis.

5. Finding the Exiting Variable

As in the previous section let ij be the entering variable.
Then let At' and Btj be its original nonzero coefficients as given in
Table 1 and ak
Table 3. From (4) it follows that

its period k coefficients in the reduced form of

A=), Sk <at

k
= i (11)
8ee1 = K1 (Bey - [0]Byyla]
= RISIB 18y 2 RS T
Letting all nonbasic variables other than xtj be zero it follows from
(5) and (11) that
X1 o X1 = bi - aéxkz (12 .ka)
where
£, =
ay = a, (12.Tb)
a) = a_ - [Ak2|0]a}'(+1 for: K < T (12.kb)

18




Hence the pivot row must satisfy

_— = min e

el . 24
ki A=) ki
ki

- = th - =
1 1 1 ' 1
where b]i and as represent the i components of b] and ay

respectively.

. Concluding Remarks and Example

The development of special purpose algorithms to take advantage of

staircase structures in linear programs has previously been dealt with

by Dantzig [2], Ho and Manne [©], Ho [7], and Glassey [5].

Dantzig [2] uses a substitute basis as opposed to a substitute
inverse for solving the more general staircase problem in which nonzero
elements may appear anywhere below the diagonal.

In the decomposition of Ho and Manne [€] it was reported that
computer storage requirements were greatly reduced when compared to the
simplex method but computation times were significantly increased.
However, Ho [7] has subsequently incorporated new techniques which
reduced computation times below that of the simplex method.

Storage requirements of the method of this report should be
competitive with the [(]. Computationally more frequent but faster
matrix reinversions would be required using this method than with the
simplex method.

If pivoting is used, then computational efficiency depends largely
on the column dimensions of the a in Table 3. The simplex method using

i

product form of the inverse requires multiplication by an m by m matrix




which is the identity except for one column in order to update. For the

substitute inverse, no updating occurs for periods earlier than the

periods of both the entering and exiting variables. To update Ks one

multiplies by an m, by m, matrix which is identical to the identity

matrix except for ome column if s is the first period to be updated i

and multiplies by a1 such matrices otherwise. Hence efficiency

depends to a large extent on the a,. Previous experience on problems

of this type indicate that the a, are usually quite small.

If the dyad matrix method is used, computational efficiency
depends largely on the absolute difference between the periods of the
entering and exiting variable. In particular if the entering and
exiting variable are of the same period, the Ks which are updated
are done so by adding one dyad matrix. Otherwise one updates by adding
anywhere from one to the absolute difference between the periods of the
entering and exiting variables. The addition of a dyad matrix is about
the equivalent of a single pivot in terms of computation time.

Note that with either method one would want to reinvert more often
in the higher numbered periods than in the lower numbered ones. If all
periods had the same number of equations, one could reinvert the K
matrices approximately T times as often as in the simplex method and
still be competitive. It should also be noted that the number of dyad
matrices to be added to the Kt cannot exceed T at any iteration
and that this can occur only in period T and even then cnly if the
pair of variables entering and leaving the basis are from periods 1

and T. Hence if one were to reinvert after a fixed number, say k, of
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dyad matrix additions to any Kg one would reinvert fewer than T

times as often as one would by reinverting after k iterations of the
simplex method. Of course, using this criteria, some of the Ki (in
particular Kl) would be updated fewer than every k iterations and
others (in particular KT) would be updated more often than every k
iterations.

The relevant parameters discussed above were gathered from a
standard simplex method run of the § period PILOT energy model and
the results are summarized in Table L. The values of the a, are
large enough to indicate that the pivoting method would not be effi-
cient except for period 9 and of course the first period to be updated.
However, the dyad matrix method of updating appears to be extremely
efficient. Noting that period 9 has much fewer constraints than
periods 1 through 8, the dyad matrix update method should be compe-
titive with the simplex method if no more than & dyad matrices are
added per period per iteration. Table 4 shows that the last period,
which is the one requiring the largest number of dyad matrix addi-
tions, requires but 3.218 per iteration. The average number of dyad

matrix additions per iteration for all periods is 1.778.
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Number of Dyad

i Number of ‘ ! Matrix Additions
Period | {Average | Average per
Number (i) | Constraints | Variable . a, ; Total Iteration

| |

1 ‘ 106 345 l 26 o 137

2 1c7 346 57| 5% 487

3 107 | 346 1 29 106 895

L 107 346 ! 31 165 1.331

5 107 346 ' 28 229 1.8h7

6 107 : 346 29 | 284 2.290

T 107 ‘ 346 26 339 2.734

8 124 ! 363 2 380 3.065

9 46 ' 46 -- 399 3.218 1

TABLE L4: Statistics for the PILOT energy model run of 124 iterationms

*These numbers are based on the assumption\that the entering
and exiting variables are basic to the period for which they belong
(except for the entering variable in Case 2 of Section 3). The fact
that this would not always be the case means actual numbers would be

lower than those in the last two columns of Table k.
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